
1

Dual-level Parallel Analysis of
Harbor Wave Response Using
MPI and OpenMP

Steve W. Bova, Clay P. Breshears,
Christine Cuicchi, Zeki Demirbilek,
and Henry A. Gabb
CEWES MSRC and WES Coastal and
Hydraulics Laboratory

2

Project Goals
l Apply the latest HPC technology to

coastal operations & planning
l Modify CGWAVE, an existing serial,

production code
– Increase model resolution
– Improve simulation turnaround time
– Very little source code alteration

3

Applications
l Military and civil works
l Forecasting tool of DoD
l Harbors resonate at natural

frequencies
– Evaluate placement of wave gauges for

harbor monitoring
– Determine where problem mooring and

on/off loading conditions may occur
– Select optimum sites for amphibious

operations

4

Computer model
l CGWAVE

– Serial code is production harbor wave
climate and response tool

– Results used by
• US Department of Defense
• Lloyds of London

– Method
• Elliptic mild-slope wave equation
• Leads to an independent Helmholtz-type

equation for each incident wave component
• Resulting large, sparse systems solved via

conjugate gradient

5

Computer model

Two kinds of resolution
•spatial (finite element mesh, bathymetry)
•sea-state (number of incident waves)

CGWAVE

0),(2 =+∇2 φφφφ yxki

Wave amplitude
 and phase

Harbor responseBathymetry

Input

Incident wave
 sets

Input

6

Parallel implementation issues
l NUMA requires attention to data

placement with OpenMP
– “first touch” principle on SGI/CRAY

Origin2000

l Two load-balancing schemes tested
– Round-robin

• static
• efficiency depends on set ordering

– Boss-worker
• dynamic
• independent of set ordering, system load

7

OpenMP thread OpenMP thread

Worker 1
MPI process

wave component l

CG Solve

Worker 1
MPI process

wave component i

OpenMP thread OpenMP thread

Worker 2
MPI process

wave component m

CG Solve

Worker 2
MPI process

wave component j

OpenMP thread OpenMP thread

Worker 3
MPI process

wave component n

CG Solve

Worker 3
MPI process

wave component k

Boss MPI process

Dual-level parallelism

8

Dynamic load balancing
l Worker:

 do infinite loop

 blocking send ! ask boss for work
 blocking receive ! get component
 if (not termination signal) then

 Perform calculations to solve wave
component

 else
 exit infinite loop
 endif
 enddo
 MPI_Finalize

l Boss:

 do i = 1, number_of_wave_components

 blocking receive ! wait for work request
 blocking send ! send work order
 enddo
 ! All wave components solved
 do worker = 1, nprocs - 1
 blocking receive ! wait for work request
 blocking send ! fire worker
 enddo
 MPI_Finalize

9

Two sample problem sets
l Coarse mesh: 50,000 elements
l Fine mesh: 150,000 elements

l 75 incident waves in sea state
– five periods
– 15 directions
– 40 amplitudes

10

Why load balancing is necessary

0
500

1000
1500
2000

2500
3000
3500
4000

0 25 50 75
Wave component

T
im

e
(s

ec
o

n
d

s)

Coarse mesh
Fine mesh

The chart
shows the
wallclock
time
required
to solve
each
individual
component

11

Load-balanced wallclock time

1
2

4
16

30

1
2

4
8

0

5000

10000

15000

20000

se
co

n
d

s

MPI Workers
OpenMP
Threads

Coarse mesh sample problem, 75 wave components

12

1
2

4
16

30

1
2

4
8

0

10000

20000

30000

40000

50000

S
ec

o
n

d
s

MPI Workers

OpenMP
Threads

 Fine mesh sample problem, 75 wave components

Load-balanced wallclock time

13

MPI_Connect

Boss

Worker
Worker

Worker
WorkerWorkerWorkerWorker

Worker
Worker

Worker

CEWES MSRC
SGI O2000

ASC MSRC
SGI O2000

Boss process distributes
components to workers as
requested

Each worker is an MPI
process with OpenMP

threads

14

MPI_Connect algorithm
l Worker:

 connect with boss ! intercomm set-up

 do infinite loop
 blocking send ! ask boss for work
 blocking receive ! get component
 if (not termination signal) then

 Perform calculations to solve wave
component

 else
 exit infinite loop
 endif
 enddo
 MPI_Finalize

l Boss:

 connect with worker groups ! intercomm set-up

 do i = 1, number_of_wave_components
 probe for worker request ! busy wait on comm
 blocking receive
 blocking send ! send work order
 enddo
 ! All wave components solved
 do worker = 1, nworkers
 probe for worker request ! busy wait on comm
 blocking receive
 blocking send ! fire worker
 enddo
 MPI_Finalize

15

Application
l Ponce Inlet, FL

– 45 miles NE of
Orlando

– Studies of
erosion control
and boat
capsizing

Ponce
Inlet

N

16

Application: Ponce Inlet, FL
Model bathymetry

•25 square kilometers
•118,000 grid points
•235,000 finite elements

Jetty

Inlet

17

Application: Ponce Inlet, FL
Sea state model

•Only the dominant incident wave
component

Computed surface elevation

Jetty

Inlet

t = 1.000 T

18

Application: Ponce Inlet, FL
Sea state model

•293 incident wave components
•10 distinct periods

Computed surface elevation

Jetty

Inlet

19

Application: Ponce Inlet, FL
l Fastest component took 14 hours on

a single processor
l Total estimated CPU time:
 14 hrs x 300 components = 4,200 hrs (six months)

l With 60 processors (MPI only) we
solved it over the weekend (less than
72 hrs)

20

Summary
l Demonstrated dual-level parallelism

– MPI and OpenMP feasible and beneficial
– Nested algorithm very scalable
– Suitable to engineering applications

which explore a parameter space

l Demonstrated MPI_Connect across
DoD MSRC’s

l Dual-level algorithm solved in six
minutes what previously took two
weeks

21

Implications
l Allows modeling of larger regions

– Ponce Inlet grid is about 25 sq km
– DoD wants about 250 sq km

l Allows more realistic sea state model
– Current state-of-the-art: ~50 components
– Ponce Inlet: 293 components; impractical

with original code
– DoD would like ~1000 wave components

l Can exploit MPI_Connect to address
extremely large problems

22

Acknowledgements

l Dr. Graham Fagg (UT, Knoxville):
MPI_Connect

l Dr. Mike Stephens (CEWES MSRC):
ImmersaDesk programming

l David Longmire (CEWES MSRC):
Video editing/production

l Randy Kleinman (CEWES MSRC):
beach and jetty rendering

l Alex Carrillo and John West (CEWES
MSRC): Assistance w/visualization

